Main Article Content

Abstract

The Black Volta Basin, a critical hydrological region, is experiencing rapid changes in Land Use and Land Cover (LULC) patterns due to diverse anthropogenic and environmental factors. This study employs a comprehensive Multi-Sensor Remote Sensing and Geographic Information System (GIS) methodology to assess and analyze the spatiotemporal dynamics of LULC in the basin. Utilizing data from multiple remote sensing platforms, including optical and radar sensors, as well as historical GIS datasets, a detailed LULC classification is performed. The integration of multi-temporal satellite imagery enables the detection and quantification of changes across distinct land cover categories. Through rigorous spatial analysis and statistical techniques, the study reveals the extent and magnitude of LULC transformations over a defined period. Land cover transitions are identified, characterized, and linked to potential drivers such as urbanization, agricultural expansion, and natural processes. The outcomes of this research contribute to an enhanced understanding of the evolving LULC dynamics in the Black Volta Basin, shedding light on both natural and human-induced changes. The results underscore the significance of a multi-sensor approach in accurately capturing complex LULC changes and their implications for regional sustainability and resource management. This study's insights serve as valuable inputs for policymakers, researchers, and stakeholders engaged in land-use planning, environmental conservation, and sustainable development within the Black Volta Basin and similar ecologically sensitive areas.

Keywords

Spatial Analysis Land Use Land Cover Dynamics LULC Black Volta Basin Multi-Sensor Remote Sensing GIS Approach

Article Details

How to Cite
Ali Dayinday, S. (2023). Assessment and Spatial Analysis of Land Use and Land Cover (LULC) Dynamics in the Black Volta Basin. Convergence Chronicles, 4(4), 158–177. https://doi.org/10.53075/Ijmsirq/453636636363

References

  1. A, A. M. (2021). COMMUNAL FIXED POINT IN FUZZY 2- METRIC SPACES. International Journal of Multidisciplinary Studies and Innovative Research, 7(7), 481–487. https://doi.org/10.53075/ijmsirq543101
  2. Asare, Y. M., Forkuo, E. K., Forkuor, G., & Thiel, M. (2020). Evaluation of gap-filling methods for Landsat 7 ETM+ SLC-off image for LULC classification in a heterogeneous landscape of West Africa. International Journal of Remote Sensing, 41(7), 2544–2564. https://doi.org/10.1080/01431161.2019.1693076
  3. Barnieh, B. A., Jia, L., Menenti, M., Zhou, J., & Zeng, Y. (2020). Mapping land use land cover transitions at different spatiotemporal scales in West Africa. Sustainability (Switzerland), 12(20), 1–52. https://doi.org/10.3390/su12208565
  4. Coulon, C., Pryet, A., Lemieux, J. M., Yrro, B. J. F., Bouchedda, A., Gloaguen, E., Comte, J. C., Dupuis, J. C., & Banton, O. (2021). A framework for parameter estimation using sharp-interface seawater intrusion models. Journal of Hydrology, 600. https://doi.org/10.1016/j.jhydrol.2021.126509
  5. Dimobe, K., Kouakou, J. L. N. djoré, Tondoh, J. E., Zoungrana, B. J. B., Forkuor, G., & Ouédraogo, K. (2018). Predicting the potential impact of climate change on carbon stock in semi-arid west African savannas. Land, 7(4). https://doi.org/10.3390/land7040124
  6. Gebrechorkos, S. H., Taye, M. T., Birhanu, B., Solomon, D., & Demissie, T. (2023). Future Changes in Climate and Hydroclimate Extremes in East Africa. Earth’s Future, 11(2). https://doi.org/10.1029/2022EF003011
  7. Gudka, M., Gardiner, K. L. K., & Lomas, T. (2023). Towards a framework for flourishing through social media: a systematic review of 118 research studies. Journal of Positive Psychology, 18(1), 86–105. https://doi.org/10.1080/17439760.2021.1991447
  8. Idrissou, M., Diekkrüger, B., Tischbein, B., Ibrahim, B., Yira, Y., Steup, G., & Poméon, T. (2020). Testing the robustness of a physically-based hydrological model in two data limited inland valley catchments in dano, Burkina Faso. Hydrology, 7(3). https://doi.org/10.3390/HYDROLOGY7030043
  9. Kayitesi, N. M., Guzha, A. C., & Mariethoz, G. (2022). Impacts of land use land cover change and climate change on river hydro-morphology- a review of research studies in tropical regions. In Journal of Hydrology (Vol. 615). Elsevier B.V. https://doi.org/10.1016/j.jhydrol.2022.128702
  10. Koltsida, E., & Kallioras, A. (2019). Groundwater flow simulation through the application of the FREEWAT modeling platform. Journal of Hydroinformatics, 21(5), 812–833. https://doi.org/10.2166/hydro.2019.040
  11. Kumar, C. P. (2019). An Overview of Commonly Used Groundwater Modelling Software. International Journal of Advanced Research in Science, Engineering, and Technology, 6(1). www.ijarset.com
  12. Larbi, I., Obuobie, E., Verhoef, A., Julich, S., Feger, K. H., Bossa, A. Y., & Macdonald, D. (2020). Water balance components estimation under scenarios of land cover change in the Vea catchment, West Africa. Hydrological Sciences Journal, 65(13), 2196–2209. https://doi.org/10.1080/02626667.2020.1802467
  13. Miracle, A., & Adaobi, C. C. (2023). Advancement in the Healthcare Field of Wearable Technology and Future Perspective. In J Mat Sci Apl Eng (Vol. 2, Issue 2). www.mkscienceset.com
  14. Morakinyo, B., Lavender, S., Schwarz, J., & Abbott, V. (2019). MAPPING OF LAND COVER AND ESTIMATION OF THEIR EMISSIVITY VALUES FOR GAS FLARING SITES IN THE NIGER DELTA. British Journal of Environmental Sciences, 7(2), 31–58. www.eajournals.org
  15. Obahoundje, S., Youan Ta, M., Diedhiou, A., Amoussou, E., & Kouadio, K. (2021). Sensitivity of Hydropower Generation to Changes in Climate and Land Use in the Mono Basin (West Africa) using CORDEX Dataset and WEAP Model. Environmental Processes, 8(3), 1073–1097. https://doi.org/10.1007/s40710-021-00516-0
  16. Popat, A., & Tarrant, C. (2023). Exploring adolescents’ perspectives on social media and mental health and well-being – A qualitative literature review. Clinical Child Psychology and Psychiatry, 28(1), 323–337. https://doi.org/10.1177/13591045221092884
  17. Rafee, S. A. A., Uvo, C. B., Martins, J. A., Domingues, L. M., Rudke, A. P., Fujita, T., & Freitas, E. D. (2019). Large-scale hydrological modeling of the Upper Paraná River Basin. Water (Switzerland), 11(5). https://doi.org/10.3390/w11050882
  18. Reiter, F., & Matthes, J. (2023). Correctives of the Mainstream Media? A Panel Study on Mainstream Media Use, Alternative Digital Media Use, and the Erosion of Political Interest as Well as Political Knowledge. Digital Journalism, 11(5), 813–832. https://doi.org/10.1080/21670811.2021.1974916
  19. Tazioli, A., Colombani, N., Palpacelli, S., Mastrocicco, M., & Nanni, T. (2020). Monitoring and modelling interactions between the Montagna dei Fiori aquifer and the Castellano stream (Central Apennines, Italy). Water (Switzerland), 12(4). https://doi.org/10.3390/W12040973
  20. Zoungrana, B. J. B., Conrad, C., Amekudzi, L. K., Thiel, M., Da, E. D., Forkuor, G., & Löw, F. (2015a). Multi-temporal Landsat images and ancillary data for land use/cover change (LULCC) detection in the Southwest of Burkina Faso, West Africa. Remote Sensing, 7(9), 12076–12102. https://doi.org/10.3390/rs70912076
  21. Zoungrana, B. J. B., Conrad, C., Amekudzi, L. K., Thiel, M., Da, E. D., Forkuor, G., & Löw, F. (2015b). Multi-temporal Landsat images and ancillary data for land use/cover change (LULCC) detection in the Southwest of Burkina Faso, West Africa. Remote Sensing, 7(9), 12076–12102. https://doi.org/10.3390/rs70912076